minte9
LearnRemember





Karatsuba

Fast multiplication algorithm, developed by Anatoly Karatsuba at the age of 23!
 
""" Karatsuba Multiplication Algorithm

Fast multiplication algorithm, developed by Anatoly Karatsuba 
in 1960, at the age of 23!

The * operator makes multiplication easy in high-level languages.
But low-level hardware need a way that uses more primitive operations.

We could implement it using a loop, but it is slow. 
Karatsuba used a precomputed table of products for single digits numbers.

1357 x 2467
    = (10^2*13 + 57) * (10^2*24 + 67) 
ab x cd
    = (10^(n/2)*a + b) * (10^(n/2)*c + d)
    = 10^n*ac + 10^(n/2)*(ad + bc) + bd
    = 10^n*k1 + 10^(n/2)*k4 + k2
"""

# Normaly, lookup tables are hardcoded in the code
TABLE = {}
for i in range(10):
    for j in range(10):
        TABLE[(i, j)] = i * j

HALF_TABLE = []
for i in range(100):
    HALF_TABLE.append(i // 2)

def strpad(str, n, padding='left', chr='0'):
    if padding == 'left':
        return n * chr + str
    return str + n * chr

def karatsuba(x, y):
    assert isinstance(x, int), 'x must be integer'
    assert isinstance(y, int), 'y must be integer'
    if x < 10 and y < 10: 
        return TABLE[(x, y)] # Base case (single digits numbers)

    # Pad with zeros (so x and y will have same length)
    x = str(x)
    y = str(y)
    if len(x) < len(y): x = strpad(x, len(y) - len(x), 'left')
    if len(y) < len(x): y = strpad(y, len(x) - len(y), 'left')  

    # Split x and y into halves
    m = HALF_TABLE[len(x)]
    a, b = int(x[:m]), int(x[m:])
    c, d = int(y[:m]), int(y[m:])

    # Recusive calls
    k1 = karatsuba(a, c)            # ac
    k2 = karatsuba(b, d)            # bd
    k3 = karatsuba(a + b, c + d)    # ac + ad + bc + bd
    k4 = k3 - k2 - k1               # ad + bc

    # Add zeros (as multiply with 10s)
    k1 = strpad(str(k1), (len(x) - m) + (len(x) - m), 'right')  # 10^n*k1 
    k4 = strpad(str(k4), (len(x) - m), 'right')                 # 10^(n/2)*k4

    return int(k1) + int(k4) + int(k2)  

def linear_product(x, y):
    product = 0
    for _ in range(x):
        product += y
    return product

def native_product(x, y):
    return x * y

# Tests
assert karatsuba(10, 20) == 200
assert karatsuba(90, 900) == 81000
assert karatsuba(1357, 2468) == 3349076

# Time
import time
x = 123_456_789
y = 123_456_789

t0 = time.time()
p1 = karatsuba(x, y); t1 = time.time() - t0

t0 = time.time()
p2 = linear_product(x, y); t2 = time.time() - t0

t0 = time.time()
p3 = native_product(x, y); t3 = time.time() - t0

assert p1 == p2
print("karatsuba()", t1, "s")
print("linear_product()", t2, "s")
print("native_product()", t3, "s")

"""
    karatsuba()      0.0003743171691894531 s
    linear_product() 8.377368927001953 s
    native_product() 3.0994415283203125e-06 s
"""



  Last update: 396 days ago